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A recently introduced numerical expression for spectral estimation, called the regularized resolvent transform
(RRT) (3. Magn. Resor200Q 147, 129), is shown to be very useful in a number of applications in quantum
dynamics calculations. RRT has emerged from the filter diagonalization method (FDM), although it is based
on a different linear algebraic algorithm and, therefore, has different numerical properties, such as stability,
robustness, speed, etc. Given a time sigi| RRT provides a direct estimate of its infinite time Fourier
spectruml(s). Replacement of the argumesin the RRT expression by-iE leads to a very useful formula

to estimate the inverse Laplace transformc€t). Two applications of RRT are discussed in detail: the
calculation ofall S-matrix elements using singlewave packet propagation and the problem of estimating

the microcanonical quantities, such as the density of states, from the canonical cross-correlation functions.

I. Introduction In ref 6 we pointed out that the commonly used strategy to
) ) ) ~ compute the scattering matrix using the time-dependent ap-
In this paper we are concerned with signal processing proach, where each column of tigmatrix is computed by
problems arising in quantum dynamics calculations. A com- propagating a wave packet with specific initial characteriti€s
monly implemented scheme consists of the two general steps:is not necessarily the optimal. In such calculations a lot of
(i) the signal generation, where the “signal” is not necessarily jrformation contained in the computed time cross-correlation
the ultimate quantity of interest, and (ii) tisegnal processing  functions is wasted. A much more economical approach could
When.the physically interesting informgtion is extracted from ;g propagation of aingleinitial wave packet: anys-matrix
the signal by, for example, solving @nverse problem In element (or a general transition matrix element) could be
particular, we will consider two inverse problems, the spectral computed by processing cross-correlation functions of the
estimation from truncated cross-correlated time signals and propagated state with the appropriate initial and final states. It
estimation of the inverse Laplace transform. Such problems mayyas also pointed out that this approach would be most suitable
arise in the context of time-dependent and/or path-integral for the case of resonance-dominated scattering, while it could
approaches. An intelligent signal processing not only provides pe ynstable otherwise. We will revisit this problem in the present
a higher accuracy for the quantities of interest but sometimes paper.
allows one to access the information that is hardly available = \we will also consider the problem of estimating the density
otherwise. of statesp(E) from the imaginary-time-correlation function
One example is the calculation of resonance parameters ofc(8).1* The latter can be computed using the path-integral
molecules with high number and density of states by harmonic techniques. The two quantities are related via the Laplace

inversion of damped Chebyshev correlation functibfl- transform,

though, for isolated resonances, the relevant information can

be obtained by Fourier transformation of the same Chebyshev c(B) = fomp(E)e*ﬂE dE (1)

signal, to achieve a similar spectral resolution, one would need

to use a substantially longer Chebyshev propagation. However, p(E) cannot be computed directly fron(8) as the
Other examples include accurate calculatiorvefy broad signal c(f) is not available for the complex-valued argument

poles of the Green’s function by harmonic inversion of time A. Estimation of the inverse Laplace transform is a perfect
cross-correlation functiodsor tunneling splittings calculations example of a very ill-defined inverse problem.

from semiclassical real-time cross-correlation functibrs, The spectral estimation technique to be used and extended
semiclassical quantization using the Gutzwiller cross-correlated here is theregularized resalent transform(RRT)12 It has
periodic orbit sums.Apparently, in the conventional Fourier  recently emerged as a variant of fileer diagonalization method
spectral analysis of time signals this dynamical information (FDM)31(see also the revie\Wwand references therein). FDM
about the underlying system is hardly available. solves theharmonic inersion problemnamely, it fits a finite
discrete-time signat(nz), n =0, ...,N — 1, by the form

T Part of the special issue “William H. Miller Festschrift”. This work is K
dedicated to W. H. Miller on his 60th birthday. R s

* Important notations. A linear operator is identified by a c&p: The c(n7) = dee ek (2)
round brackets are used for the symmetric (not Hermitian) inner product: =
(W|®) = (P|W). Bold characters, a¥) or C, are used for matrix

representations of linear operators or vectors. Their elements are then defineq,,; ; ;
using the following notations: U]mn or [C]n. UT is a transpose of matrix %Ith the unknown complex frequencies and amplmfldesjk

U, while U is its adjoint (transposed and complex conjugated) matrix. DY diagonalizing an effective evolution operator= e, The
8 Corresponding author. E-mail: mandelsh@uci.edu. RRT is designed to directly estimate the infinite-time discrete
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Fourier transform, defined as and we can rewrite eq 5 by evaluating everything in this basis:

00

I(s) = Zoc(m)eims(l —5.42) 3 I(s) = CTR(9) 'C — ¢(0)/2 7

with R(s) = Up — €U, , where the evolution operator and the
by directly evaluating a resolvent matrix element of the same OVerlap matrix elements are defined as, respectivelylay =
evolution operatot). The term (1— 8r0/2) in eq 3 multiplies  (PMIUPL(N)), [Uo]nr = (P(n)|P(n)), and the coefficients of
c(0) by /5 to correct the error introduced by the discrete sum the 1x M column vectoiC are [C], = (®(n)|P). Itis not hard
approximation of the continuous half-line Fourier integral. to seé thatUy, Up andC are all representable in terms of the
Interestingly,|(s) can be analytically continued by simply ~ Signal data points(nz) as
replacing the real frequency argumenby —iE in the RRT
formula (see below) without creating any instability, thus, [Ulyw=cl(n+n+p7], p=01
leading to a very useful expression to estimate the inverse
Laplacge transforr¥1 of(n7). P [C], = c(no) (8)
Even though FDM and RRT are very much related, the linear
algebraic algorithms involved in the two methods are quite Rather surprisingly, eq 7 is a working expression. In the case
different as well as their numerical properties, such as stability, €q 2 is exactly satisfied and if we chodse= K, it yields the
speed, etcl(s) can, in principle, be estimated by FDM using exact infinite time Fourier spectrum,
the set ofdk andwy. However, numerical fit by the form of eq

2 may, sometimes, encounter difficulties, for instance, in the K dy c(0)
case of noisy signal and/or the presence of nonlocalized spectral I(s)= Z _— 9)
features (background spectrum) resulting in an unreliable 11— R 2

spectral estimat®.In RRTI(s) is evaluated directly by avoiding
the calculation ofdk and wy and the said instability does not even though only a finite part of the signafnz) of size N=
occur. 2M is used and the spectral parametersand d are not
The rest of the paper is organized as follows. In section Il computedThe result is also exact ¥ > K, although in this
we derive the RRT expression. In section Ill RRT is adapted case the set of vectoi®(n) is linearly dependent, requiring
for processing the Chebyshev cross-correlation functions to evaluation of a pseudo-inverse of the singWarx M matrix
compute all S-matrix elements from a single wave packet R(s). For example, the singular value decomposition (SVD) of
propagation. In section IV we analytically continue the RRT R(s) could be used. Typically, the matrices are not exactly
expression for the problem of estimating the inverse Laplace singular due to noise, although they could still be very
transform. In section V this method is extended further by ill-conditioned, implying that some kind of regularization will
considering an imaginary-time cross-correlation matrix. Section often be advantageous. We will revisit this issue later in the

VI concludes. paper.
o Unfortunately, eq 7 is numerically very expensive for long
II. Derivation of the Resolvent Formulas (e.g.,N > 1000) signals; however, just like in FD® this
To derive a linear algebraic expression for spectral estimation, Problem can be ameliorated by performing the spectral analysis
we use the quantum ansatz of Wall and Neuhatfserwhich locally in the frequency domain using a Fourier transformation

c(n7) is associated with a time autocorrelation function of a ©Of the Krylov basis{ ®(n)},

fictitious quantum system for some fictitious initial stabe -

c(nt) = (@07 @) (4) P, = nZoei“"f‘icp(n), i=12,..K,, (10

where the round brackets define the complex symmetric (not .
Hermitian) inner product. The effective evolution operaibr ~ Where here and throughout the rest of the paper the tilde
may be nonunitary but is assumed to be symmetric with respectidentifies the use of the Fourier basis. The valygsould be

to the inner product, i.e.q¥|®) = (¥|Ud) = (¥|U|D). evenly spaced using

(Note that the assumption that the evolution operatdras
a finite rankK is equivalent to the assumption of eq 2, which Ap = 2t (11)
could be used for rigorous proofs.) Substituting eq 4 into eq 3 KMz

and evaluating the geometric sum analytically, we obtain
For X = 1 andKyin» = M the transformation from the Krylov
I(s) = (cp‘{ 1 }} ’q)) 5) basis{ ®(n)}, to the Fourier basig®;} is unitary. However, as
1-€™0 2 argued first in ref 13 and later in ref 1, it is advantageous to
use a local basis of small si¥gi, < Mwith® > 1 (e.g..X =
Equation 5 cannot be used directly for calculatlg), as we ~ 1.1). It could be even more efficient to usaultiscale basi®
still need to obtain a matrix representation of the auxiliary corresponding to a nonuniform distribution gf’s with j-
objectsU and® in terms of the known date(nz). Todo so,as  dependent Fourier lengtd = M; in eq 10, which describes a

in ref 1, we introduce an auxiliary (Krylov) basis, very narrow frequency window in high resolution and the rest
of the spectrum, in low resolution, while having minimal overall
o(n)=0"%,n=0,1,.. M—1 (6) size.
. One can now use the new Fourier basis (10) to reevaluate
According to our assumption, the rankdfis K, so that theM the matrices in eq 8, which after some manipulatieads for

< K Krylov vectors ®(n) are generally linearly independent j =j'to



2766 J. Phys. Chem. A, Vol. 105, No. 12, 2001

oltMg ~g) ] (@+DM-1)

ZM e"ic[(n + p)7]

n=ol

0].=8
[Ul; P A

12)

whereS defines the symmetrization operator over the variables
@ and gy,

ég(%@j’) = 9(¥;%p) + 9@p.9) (13)

Forj =" we have

2M—-2

Z} ein‘[(pj(M _ |M —-n-— 1|)C[(n + p)T] (14)

n=

[0 =

Now by evaluatingC in the Fourier basis,

M—-1

[C], = (®|D) = Zoei""”c(nr) (15)
we can rewrite eq 7 as
I(s) = C'R(s) '€ — c(0)/2 (16)
with
R(s) =0, — €"0, (17)

Mandelshtam

Hermitian and positive definite matrix. (For a much more
elaborate discussion on regularization of ill-conditioned linear
systems see the tutorial by Neumai®r.

Equation 20 can be evaluated by solving the regularized
Hermitian least squares problem,

R'(IR( + q)X(9) =R'C
and then using eq 19.

Operationally, the spectral estimation using eq 20 (or eqs 19
and 21) has a status of “transform” (like FFT), while a “method”,
e.g., the filter diagonalization method, would refer to a procedure
that would generally be less obvious to use. More precisely, eq
20 corresponds to a direct nonlinear transformation, here called
theregularized resalent transform(RRT), of the time signal
to the frequency domain. Unlike most other nonlinear high-
resolution spectral estimators, RRT is very stable, computa-
tionally inexpensive, and has adjusting parameters that are very
straightforward to use. These parameterd@igand defining
the size and spacing of the Fourier basis in the frequency
domain, and the regularization paramegeote thatk,i, could,
in principle, be as small as 3, although a lar§er generally
improves the resolution, while increasing the cpu time according
to the cubic scaling of a linear solver. For sufficiently large
Kwin, Which is usually less than 100, the results do not change
noticeably. ThusKuin can be chosen according to how long
one is willing to wait for the spectrum to be computed. The
choice for the basis density paramet¢ybetween 1.1 and 1.2
usually works well if a single-scale basis (as opposed to a

(21)

Because of the very nature of the Fourier transformation the multiscale basi) is used. Unfortunately, there is no obvious

spectral properties around some frequescgre completely
defined by a very small subspagé;j} of size Kyin (€.9.,Kuin

= 10) with ®; ~ s. Therefore, only a smalyin x Kyin matrix
R(s) has to be inverted in eq 16 to yield a well-converged
spectrumi(s). Equation 16 can also be evaluated directly, for
example, by solving the associated linear system,

ROX(9=C (18)

and then using

I(s) = C"X(s) — c(0)/2 (19)
A nonobvious issue is the stability and robustness of the
algorithm. The matrixR may be very ill-conditioned. In this
case, even if the exact inverBe? exists, the exact solution of
eq 18 in the form ofX = R~IC is likely to be meaningless.
One explanation is that a general tiny perturbation of eifer
or R results in a huge variation oX. A regularization is

way to estimate a priori an optimal value for the regularization
parametenq, as it depends on the type of the data, level of noise,
etc. Generally, there is a wide range (e.g., an order of magnitude)
of acceptable parameters as the results are not very sensitive to
g- An increase ofg leads to a more smooth and uniform
spectrum, while decreasing the resolution. Note also that this
smoothing is nonlinear and has nothing to do with increasing
the widths of all the peaks by shifting the poles in the complex
plane byiT.

More detail about RRT for spectral estimation with some
numerical examples can be found in refs 12 and 14. In the next
sections we extend RRT to some applications in the area of
quantum dynamics calculations.

[ll. All S Matrix Elements from a Single Wavepacket
Propagation

As shown in ref 8, in the time-dependent framework, and
later in ref 9, using the time-independent Green’s function

supposed to produce a meaningful solution that, on one hand formulation, theo — o scattering amplitude can be expressed

satisfies eq 18 only approximately within certain a priori

established bounds but, on the other hand, is stable with respect

to small perturbations of eithe® or R. One possibility is to
use SVD of R(s) to calculate a pseudo-inverse by either

discarding the singular subspace or modifying the small singular

values. However, SVD, if applied at each valuespivould be
computationally quite expensive. A much less expensive
regularization of the resolvent can be obtained using the
Tikhonov regularizatioH obtained by modyfying the original
least squares probleffRX — C||2— min, corresponding to eq
18, by |IRX — C||2 + ¢?/|X||2— min:

1(9) ~ CT(R(S)'R(S) + P R(O'C — c(0)/2 (20)
where the dagger means Hermitian conjugate @msl a real
regularization parameter. With such a regularization the singu-
larity in the denominator is removed a®'R + ¢? is a

using a matrix element of the Green’s function,
_ (G (B)IE)
(Ealf e (€I ve

whereG*(E) = (H — E — i0)"* and&, and&, are wave packets
localized in the asymptotic region corresponding to the asymp-
totic channels with quantum numbersanda'. As was pointed
out in ref 9&, and &, do not have to be purely incoming or
outgoing. Moreover, even the choice of real and very narrow
wave packets suffices. The only condition is that the prefactor
defined by the overlap integrals betweé&q, &, and the
incoming asymptotic solutiors,, f .. is nonzero.

The numerically challenging part in eq 22 is the Green’s
function matrix element. It can be evaluated using a time-
dependent formulatiénin which, e.g., the initial staté, is
propagated in time, the time correlation functidiy Eq(t)) is

o (22)

oo
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computed and then Fourier transformed to yield ¢he> o
transition matrix element. Similar strategies are implemented
in other time-dependent approacHethe obvious drawback

being the need to propagate as many wave packets as there are

open channels in order to evaluate the full S-matrix or to
compute the cumulative reaction probability.

Our choice to evaluate eq 22 corresponds to the use of the
global in energy Chebysh&wor better the damped Chebyshev
recursion expansidh of the Green’s function,

N 2i 2 . .
(sa,|e+(E)|§a)=$') (ENTIENE L - 0,92) (23)

S)n=

where cos§) = E and the damped Chebyshev polynordials
satisfy the following recursion relations,

A A

=1 T=€7H, ., T,=e’@AT —e7T_)

(24)

Here for simplicity we assumed that the Hamiltonian operator
H is already rescaled so that its spectrum belongs to the interval
[—1; 1]. The damping operator & provides a correct analytic
continuation of the Chebyshev propagalar

At first glance eq 23 requires propagation of either of the
two states&, or &,, which would conceptually be similar to
the time-dependent strategies. However, as demonstrated in re
6, one can evaluatet{|G*(E)|&,) using the three cross-
correlation functions

Go(N) = (£1&4(N)),

that do not require propagation of eithéy or &, but
propagation of some auxiliary state,

&on) = fyné&o

A good choice for&y could be essentially any vector with
random coefficients so it would overlap withll system
eigenstates. The sarjgcan then be used for any other transition
amplitude.

Inref 6 Ex|GH(E)|E,) was computed by harmonic inversion
of the three cross-correlation functions and then by combining
the results to express the Green’s function matrix element in
terms of its poles and residues. However, this approach is
difficult to apply in case when the broad poles (direct scattering)
have significant contribution to the dynamics. Here we show
how RRT can be implemented avoiding the solution of the
harmonic inversion problems and, thus, making the approach
much more robust and stable.

The assumption of eq 4 is rewritten as

I=0,0, (25)

(26)

ci(n) = (@,|U" D)) (27)
where the rank of the effective evolution operatbis doubled
compared tcK, the dimensionality of the actual Hamiltonian
operatoH. This is because each complex pBleof the Green’s
function G*(E) gives rise to the two complex eigenvalues of

U, namely, e'“x and & satisfying cosvy = Ex (see refs 1 and

6 for more detail). So one should not confugewith T, and
&(n) with ®y(n), as they are associated with two different spaces.
By analogy with eq 5 we can write

(-

g

2i 1
€U 2

sin@)\

(EIG (B)IE,) = D,
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Now evaluating everything in the Fourier basis,

M—-1

P, = Eoe‘”%‘cbo(n) i=1,2,..K
n=

=11 \win

(29)

we arrive at the following regularized resolvent formula,

ELNGTB)IEY =

.A[Cg.(ﬁe(s)*ﬁe(s) + ) 'R('C, — c,,(0)/2] (30)

sin(s)
where R(s) is defined as before using eq 17 aogi(n); the
elements of the column vecto€, andC, are

M—-1

[Cl]j = (q)||(i)j) = Zbe‘impjclo(n) (31)

andcya(0) = (Swl8a)-

Equation 30 is another important new result of this paper. It
implies that anyS; could be recovered although neither of
the channel state%, or &, had to be propagated. Note that an
obvious but important consequence is that the microcanonical
reaction rate, which is proportional to the cumulative reaction
probability, can also be computedadt energies from &ingle
wave packet propagation, no matter how many scattering
Ehannels or transition states are involved in the reaction process.
Thus, for a multichannel problem the present approach compared
to those based on the conventional strategies can increase the
total numerical efficiency by a factor equal to the number of
channels.

Note, in addition, that once the initial wave packegts real,
its propagation involves only real arithmetics no matter whether
the final wave packet§, are real or complex.

IV. Estimation of the Inverse Laplace Transform

As noted in a number of publicatiohssometimes it is easier
to compute the Laplace transform of an observable rather than
the observable itself. One important example corresponds to
the imaginary-time correlation function of the type

c(B) = Tre (32)

which can be computed by path-integral Monte Carlo tech-
niques. If, however, the density of states,
R e
p(E) =Tro(E — H) ==Im|Tr———— (33)

T H—-E+I0
is the quantity of interest, one could, in principle, obtain it due
to the Laplace transform relationship (1). This circumstance
stimulated researchers to try to develop numerical algorithms
for the inverse Laplace transform. The problem is usually
complicated by the fact that the function to be inverted is very
short and noisy, so the inversion problem is very ill-defined
and any algorithm may easily become unstable. In what follows
we adapt RRT to evaluate the inverse Laplace transform for a
given discrete data se{nr), n =0, 1, ...,N — 1. To do this,
we assume that(s) satisfies eq 4, but in the present case we
meanU = e ™ (rather than &) with a non-Hermitian, but
symmetric, effective Hamiltonian operat€ with complex
poleswy satisfying Rewy > 0 and Imwy < 0. Note that there
is no contradiction with the fact th&t in eq 32 is Hermitian,

as the effective Hamiltoniaf® does not have to coincide with
H. We can now define a spectral function using
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1 by certain excited states. In ref 20 the authors considered a single
f(E) = | @ & E“D (34) autocorrelation function, while here we want to use the whole
L x L cross-correlation matrix
The density of states can be obtained f usin A~ pia
g "8 using 6r(B) = (olAe A g) (40)
1 A
p(E) = ~Imf(E) (35) Unlike ref 20, there is no strong restriction on the choicé\of

here. This makes the approach more flexible. Cleayly?) in
Thus, the problem is to estimat¢E). We can further assume  €d 40, as well as in eq 38, has the form of eq 39.

that7(Q — E) is small, which is reasonable, and uséle~ 1 To extract the spectral information froop() satisfying eq
+ 7(E — Q) to obtain the following approximation, 39, consider the superbasig(n) = U"®, n =0, ..,M — 1,1
=0, ...,L — 1, with total sizeM x L. Wecan evaluatéd,, the
f(E) ~ (q)‘[ T _ z] <I>) (36) overlap matrix, and the operatdrin this basis by analogy with
1-¢%0 2 eq 8,

where ther/2 has the same origin as in eq 5. Finally, the RRT Ul = (@,(M)IUP1@(n')) = ¢ [(n+ 1 + p)e]
expression (20) can be used directly witheplaced by—iE,
[Clin = (Do P|(N)) = Co(N7) (41)

f(E) ~ 7l(~iE) (37) . . . .

The desired spectral functidfE) = Tr[(H — E — i0)~!] can

with the data matridR(—iE) = Uy — €FU;. be estimated using eq 37 with the only difference that the size
Note that in the present case the data size is usually smallof the basis is here increased by a factok é6r the same signal

and the need to use a Fourier basis is questionable, although ifength N = 2M. This implies that ideally arL. x L cross-

one chooses the basis with values in the vicinity of zero, correlation-matrix contains by a factor bfmore information

there is a chance to reduce both the effect of noise and the sizghan a single time-correlation function. This circumstance is

of the matrices to be inverted. certainly very useful, especially in the context of the imaginary-
Equations 37 and 20 constitute an important new result that time path-integral formalism as the signals of such type decay

has at least three advantages: (i) it provides an accurate invers@xponentially with3 and, therefore, have very strict limitations

Laplace transform in the case of a noiseless signal that can beon their length. Clearly, implementation of a Fourier basis here

represented by the foriw(nz) = Zkdke "; (ii) it is computa- is completely analogous to the cases considered previously (e.g.,

tionally inexpensive as it does not involve the solution of any in ref 6) and in section II.

nonlinear optimization problem; (iii) it has no intrinsic (expo-

nential) instability problem often encountered in other ap- VI. Summary

proaches, based on an analytic continuation. o The new linear algebraic formalism based on RRT offers a
However, eq 37 has a limited applicability as only a limited  nymper of numerically efficient and computationally inexpen-

amount of information can be extracted frau(ff), which is sive ways to process the data and extract the underlying spectral

both noisy and severely truncated. Therefore, in the spirit of jrformation, subject to the condition that the data satisfies the
ref 13 (appendix E) and refs-3 it should benefit from the  5rm of & time-correlation or timerosscorrelation function.

use ofa cros_s-corre_le}t.ion_ matrix, ratherthan asingle: signal as  The applications considered in this paper present a great
in eq 32. This possibility is explored in the next section. numerical challenge and are hardly manageable by the conven-
tional signal processing techniques.
There is a broad class of problems, particularly, in the area
of quantum dynamics calculations, in which our methodology
The idea of using a cross correlation matrix is to increase can be potentially very useful. Those will be considered in our
the information content of the signal for the same time lefigth. forthcoming publications.
To be able to benefit from this using RRT, one needs the data

V. Inverse Laplace Transform by Inverting a
Cross-Correlation Matrix
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cross-correlation matrix (27) with a set of fictitious stafds}, grant CHE-9807229.
| =1, ...,L. This can be achieved by following ref 5, i.e.,
consider a cross-correlation matrix, References and Notes
R o (1) Mandelshtam, V. A.; Taylor, H. S. Chem. Physl997 107, 6756.
¢ (p) = Tr[A,e’ﬁHA,.] (38) (2) Weiss, J.; Schinke, R.; Mandelshtam, V.JA.Chem. Phys200Q
113 4588.
. . . . 3) Narevicius, E.; Neuh , D.; Korsch, H. J.; Moi Nem.
constructed using a set of linear independent operdtas phy(s_)Let?_rfgvg'%”‘zsm 250e_u auser orse oiseyevChem
| =0, ..L—1, that commute wittH and using®, = I, the (4) Mandelshtam, V. A.; Ovchinnikov, Ml. Chem. Phys1998 108,

identity operator. An example of such a set is the set of moments 9206.

of B, i.e.,A| _ |:|', =0, ..L— 1. If we now assume ﬂ;lafk . 153)9 hgglq,G%éWelbert, K.; Mandelshtam, V. A.; Wunner, Bhys. Re.
are the eigenfunctions of all these operators and defire (6) Mandelshtam, V. AJ. Chem. Phys1998 108, 9999.
e ™ and®, = S (YA Y)Yk it is not very hard to see, that eq (7) Balint-Kurti, G. G.; Dixon, R. N.; Marston, C. Gzaraday Trans.

Chem. Soc199Q 86, 1741. Dai, J. Q.; Zhang, J. Z. H. Phys. Chem.
1996 100, 6898.
R (8) Tannor, D. J.; Weeks, D. B. Chem. Phys1993 98, 3884.
¢ (nt) = (CI)||U”|(I)|,) (39) (9) Kouri, D. J.; Huang, Y.; Zhu, W.; Hoffman, D. K. Chem. Phys.
1994 100, 3662.
AT . L N 10) Gray, S. K.; Balint-Kurti, G. GJ. Chem. Phys1998 108 950.
Another possibility is to implement projection operat@xs° éllg Berr):e, B. J.Annu. Re. Phys. Chem1986 37,y401. Freeman, D.
that project an initial staté to states®; = AP, dominated L. Adv. Chem. phys1988 70, 139. Thirumalai, D.; Berne, B. Tomput.

38 can indeed be rewritten as



RRT for Quantum Dynamics Calculations

Phys. Commun1991, 63, 415. Ceperley, D. M.Rev. Mod. Phys.1995
67, 279. Plimak, L.; Pollak, EJ. Chem. Phys200Q 113 4533.

(12) Chen, J.; Shaka, A. J.; Mandelshtam, V.JAMagn. Resor200Q
147, 129.

(13) Wall, M. R.; Neuhauser, DOl. Chem. Phys1995 102, 8011.

(14) Mandelshtam, V. AProg. NMR Spectros@001, 38, 159.

(15) Chen, J.; Mandelshtam, V. A. Chem. Phys200Q 112 4429.

(16) Neumaier, ASIAM Re. 1998 40, 636.

(17) Tikhonov, A.Saviet Math. Dokl.1963 4, 1035. Golub, G. H.; van

J. Phys. Chem. A, Vol. 105, No. 12, 2004769

Loan, C. F.Matrix Computations Johns Hopkins University Press:
Baltimore, 1989.

(18) Hartke, B.; Kosloff, R.; Ruhman, £hem. Phys. Lettl989 158
238. Kosloff, R.J. Phys. Chenil988 92, 2087. Huang, Y.; Zhu, W.; Kouri,
D. J.; Hoffman, D. K.Chem. Phys. Lettl993 206, 96.

(19) Mandelshtam, V. A.; Taylor, H. S. Chem. Physl995 102, 7390.
Mandelshtam, V. A.; Taylor, H. S1. Chem. Phys1995 103 2903.

(20) Blume, D.; Mladenovic, M.; Lewerenz, M.; Whaley, K. 8.Chem.
Phys.1999 110, 5789.



