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A recently introduced numerical expression for spectral estimation, called the regularized resolvent transform
(RRT) (J. Magn. Reson.2000, 147, 129), is shown to be very useful in a number of applications in quantum
dynamics calculations. RRT has emerged from the filter diagonalization method (FDM), although it is based
on a different linear algebraic algorithm and, therefore, has different numerical properties, such as stability,
robustness, speed, etc. Given a time signalc(t), RRT provides a direct estimate of its infinite time Fourier
spectrumI(s). Replacement of the arguments in the RRT expression by-iE leads to a very useful formula
to estimate the inverse Laplace transform ofc(t). Two applications of RRT are discussed in detail: the
calculation ofall S-matrix elements using asinglewave packet propagation and the problem of estimating
the microcanonical quantities, such as the density of states, from the canonical cross-correlation functions.

I. Introduction

In this paper we are concerned with signal processing
problems arising in quantum dynamics calculations. A com-
monly implemented scheme consists of the two general steps:
(i) the signal generation, where the “signal” is not necessarily
the ultimate quantity of interest, and (ii) thesignal processing,
when the physically interesting information is extracted from
the signal by, for example, solving aninVerse problem. In
particular, we will consider two inverse problems, the spectral
estimation from truncated cross-correlated time signals and
estimation of the inverse Laplace transform. Such problems may
arise in the context of time-dependent and/or path-integral
approaches. An intelligent signal processing not only provides
a higher accuracy for the quantities of interest but sometimes
allows one to access the information that is hardly available
otherwise.

One example is the calculation of resonance parameters of
molecules with high number and density of states by harmonic
inversion of damped Chebyshev correlation functions.1,2 Al-
though, for isolated resonances, the relevant information can
be obtained by Fourier transformation of the same Chebyshev
signal, to achieve a similar spectral resolution, one would need
to use a substantially longer Chebyshev propagation.

Other examples include accurate calculation ofVery broad
poles of the Green’s function by harmonic inversion of time
cross-correlation functions3, or tunneling splittings calculations
from semiclassical real-time cross-correlation functions,4 or
semiclassical quantization using the Gutzwiller cross-correlated
periodic orbit sums.5 Apparently, in the conventional Fourier
spectral analysis of time signals this dynamical information
about the underlying system is hardly available.

In ref 6 we pointed out that the commonly used strategy to
compute the scattering matrix using the time-dependent ap-
proach, where each column of theS-matrix is computed by
propagating a wave packet with specific initial characteristics7-10

is not necessarily the optimal. In such calculations a lot of
information contained in the computed time cross-correlation
functions is wasted. A much more economical approach could
use propagation of asingle initial wave packet: anyS-matrix
element (or a general transition matrix element) could be
computed by processing cross-correlation functions of the
propagated state with the appropriate initial and final states. It
was also pointed out that this approach would be most suitable
for the case of resonance-dominated scattering, while it could
be unstable otherwise. We will revisit this problem in the present
paper.

We will also consider the problem of estimating the density
of statesF(E) from the imaginary-time-correlation function
c(â).11 The latter can be computed using the path-integral
techniques. The two quantities are related via the Laplace
transform,

However,F(E) cannot be computed directly fromc(â) as the
signal c(â) is not available for the complex-valued argument
â. Estimation of the inverse Laplace transform is a perfect
example of a very ill-defined inverse problem.

The spectral estimation technique to be used and extended
here is theregularized resolVent transform(RRT).12 It has
recently emerged as a variant of thefilter diagonalization method
(FDM)13,1 (see also the review14 and references therein). FDM
solves theharmonic inVersion problem, namely, it fits a finite
discrete-time signalc(nτ), n ) 0, ...,N - 1, by the form

with the unknown complex frequenciesωk and amplitudesdk

by diagonalizing an effective evolution operatorÛ ) e-iτΩ̂. The
RRT is designed to directly estimate the infinite-time discrete
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c(â) ) ∫0

∞
F(E)e-âE dE (1)

c(nτ) ) ∑
k)1

K

dke
-inτωk (2)

2764 J. Phys. Chem. A2001,105,2764-2769

10.1021/jp0036689 CCC: $20.00 © 2001 American Chemical Society
Published on Web 02/22/2001



Fourier transform, defined as

by directly evaluating a resolvent matrix element of the same
evolution operatorÛ. The term (1- δn0/2) in eq 3 multiplies
c(0) by 1/2 to correct the error introduced by the discrete sum
approximation of the continuous half-line Fourier integral.

Interestingly,I(s) can be analytically continued by simply
replacing the real frequency arguments by -iE in the RRT
formula (see below) without creating any instability, thus,
leading to a very useful expression to estimate the inverse
Laplace transform ofc(nτ).

Even though FDM and RRT are very much related, the linear
algebraic algorithms involved in the two methods are quite
different as well as their numerical properties, such as stability,
speed, etc.I(s) can, in principle, be estimated by FDM using
the set ofdk andωk. However, numerical fit by the form of eq
2 may, sometimes, encounter difficulties, for instance, in the
case of noisy signal and/or the presence of nonlocalized spectral
features (background spectrum) resulting in an unreliable
spectral estimate.15 In RRT I(s) is evaluated directly by avoiding
the calculation ofdk and ωk and the said instability does not
occur.

The rest of the paper is organized as follows. In section II
we derive the RRT expression. In section III RRT is adapted
for processing the Chebyshev cross-correlation functions to
compute all S-matrix elements from a single wave packet
propagation. In section IV we analytically continue the RRT
expression for the problem of estimating the inverse Laplace
transform. In section V this method is extended further by
considering an imaginary-time cross-correlation matrix. Section
VI concludes.

II. Derivation of the Resolvent Formulas

To derive a linear algebraic expression for spectral estimation,
we use the quantum ansatz of Wall and Neuhauser,13 in which
c(nτ) is associated with a time autocorrelation function of a
fictitious quantum system for some fictitious initial stateΦ,

where the round brackets define the complex symmetric (not
Hermitian) inner product. The effective evolution operatorÛ
may be nonunitary but is assumed to be symmetric with respect
to the inner product, i.e., (ÛΨ|Φ) ) (Ψ|ÛΦ) ) (Ψ|Û|Φ).

(Note that the assumption that the evolution operatorÛ has
a finite rankK is equivalent to the assumption of eq 2, which
could be used for rigorous proofs.) Substituting eq 4 into eq 3
and evaluating the geometric sum analytically, we obtain

Equation 5 cannot be used directly for calculatingI(s), as we
still need to obtain a matrix representation of the auxiliary
objectsÛ andΦ in terms of the known datac(nτ). To do so, as
in ref 1, we introduce an auxiliary (Krylov) basis,

According to our assumption, the rank ofÛ is K, so that theM
e K Krylov vectorsΦ(n) are generally linearly independent

and we can rewrite eq 5 by evaluating everything in this basis:

with R(s) ) U0 - eiτsU1 , where the evolution operator and the
overlap matrix elements are defined as, respectively, [U1]nn′ )
(Φ(n)|ÛΦ(n′)), [U0]nn′ ) (Φ(n)|Φ(n′)), and the coefficients of
the 1× M column vectorC are [C]n ) (Φ(n)|Φ). It is not hard
to see1 that U1, U0 andC are all representable in terms of the
signal data pointsc(nτ) as

Rather surprisingly, eq 7 is a working expression. In the case
eq 2 is exactly satisfied and if we chooseM ) K, it yields the
exact infinite time Fourier spectrum,

eVen though only a finite part of the signal c(nτ) of size N)
2M is used and the spectral parametersωk and dk are not
computed.The result is also exact ifM > K, although in this
case the set of vectorsΦ(n) is linearly dependent, requiring
evaluation of a pseudo-inverse of the singularM × M matrix
R(s). For example, the singular value decomposition (SVD) of
R(s) could be used. Typically, the matrices are not exactly
singular due to noise, although they could still be very
ill-conditioned, implying that some kind of regularization will
often be advantageous. We will revisit this issue later in the
paper.

Unfortunately, eq 7 is numerically very expensive for long
(e.g., N > 1000) signals; however, just like in FDM13,1 this
problem can be ameliorated by performing the spectral analysis
locally in the frequency domain using a Fourier transformation
of the Krylov basis{Φ(n)},

where here and throughout the rest of the paper the tilde
identifies the use of the Fourier basis. The valuesæj could be
evenly spaced using

For ℵ ) 1 andKwin ) M the transformation from the Krylov
basis{Φ(n)}, to the Fourier basis{Φ̃j} is unitary. However, as
argued first in ref 13 and later in ref 1, it is advantageous to
use a local basis of small sizeKwin , M with ℵ > 1 (e.g.,ℵ )
1.1). It could be even more efficient to usemultiscale basis15

corresponding to a nonuniform distribution ofæj’s with j-
dependent Fourier lengthM ) Mj in eq 10, which describes a
very narrow frequency window in high resolution and the rest
of the spectrum, in low resolution, while having minimal overall
size.

One can now use the new Fourier basis (10) to reevaluate
the matrices in eq 8, which after some manipulation1 leads for
j * j′ to

I(s) ) ∑
n)0

∞

c(nτ)einτs(1 - δn0/2) (3)

c(nτ) ) (Φ|Ûn|Φ) (4)

I(s) ) (Φ|{ 1

1 - eiτsÛ
- 1

2}|Φ) (5)

Φ(n) ) ÛnΦ , n ) 0, 1, ... ,M - 1 (6)

I(s) ) CTR(s)-1C - c(0)/2 (7)

[Up]nn′ ) c[(n + n′ + p)τ], p ) 0, 1

[C]n ) c(nτ) (8)

I(s) ) ∑
k)1

K dk

1 - eiτ(s-ωk)
-

c(0)

2
(9)

Φ̃j ) ∑
n)0

M - 1

einτæjΦ(n), j ) 1,2, ...,Kwin (10)

∆æ ) 2π
ℵMτ

(11)
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whereŜdefines the symmetrization operator over the variables
æj andæj′,

For j ) j′ we have

Now by evaluatingC in the Fourier basis,

we can rewrite eq 7 as

with

Because of the very nature of the Fourier transformation the
spectral properties around some frequencys are completely
defined by a very small subspace{Φ̃j} of sizeKwin (e.g.,Kwin

) 10) with Φ̃j ∼ s. Therefore, only a smallKwin × Kwin matrix
R̃(s) has to be inverted in eq 16 to yield a well-converged
spectrumI(s). Equation 16 can also be evaluated directly, for
example, by solving the associated linear system,

and then using

A nonobvious issue is the stability and robustness of the
algorithm. The matrixR̃ may be very ill-conditioned. In this
case, even if the exact inverseR̃-1 exists, the exact solution of
eq 18 in the form ofX̃ ) R̃-1C̃ is likely to be meaningless.
One explanation is that a general tiny perturbation of eitherC̃
or R̃ results in a huge variation ofX̃. A regularization is
supposed to produce a meaningful solution that, on one hand,
satisfies eq 18 only approximately within certain a priori
established bounds but, on the other hand, is stable with respect
to small perturbations of eitherC̃ or R̃. One possibility is to
use SVD of R̃(s) to calculate a pseudo-inverse by either
discarding the singular subspace or modifying the small singular
values. However, SVD, if applied at each value ofs, would be
computationally quite expensive. A much less expensive
regularization of the resolvent can be obtained using the
Tikhonov regularization17 obtained by modyfying the original
least squares problem||R̃X̃ - C̃||2 f min, corresponding to eq
18, by ||R̃X̃ - C̃||2 + q2||X̃||2 f min:

where the dagger means Hermitian conjugate andq is a real
regularization parameter. With such a regularization the singu-
larity in the denominator is removed as (R̃†R̃ + q2) is a

Hermitian and positive definite matrix. (For a much more
elaborate discussion on regularization of ill-conditioned linear
systems see the tutorial by Neumaier.16)

Equation 20 can be evaluated by solving the regularized
Hermitian least squares problem,

and then using eq 19.
Operationally, the spectral estimation using eq 20 (or eqs 19

and 21) has a status of “transform” (like FFT), while a “method”,
e.g., the filter diagonalization method, would refer to a procedure
that would generally be less obvious to use. More precisely, eq
20 corresponds to a direct nonlinear transformation, here called
the regularized resolVent transform(RRT), of the time signal
to the frequency domain. Unlike most other nonlinear high-
resolution spectral estimators, RRT is very stable, computa-
tionally inexpensive, and has adjusting parameters that are very
straightforward to use. These parameters areKwin andℵ defining
the size and spacing of the Fourier basis in the frequency
domain, and the regularization parameterq. Note thatKwin could,
in principle, be as small as 3, although a largerKwin generally
improves the resolution, while increasing the cpu time according
to the cubic scaling of a linear solver. For sufficiently large
Kwin, which is usually less than 100, the results do not change
noticeably. Thus,Kwin can be chosen according to how long
one is willing to wait for the spectrum to be computed. The
choice for the basis density parameter,ℵ, between 1.1 and 1.2
usually works well if a single-scale basis (as opposed to a
multiscale basis15) is used. Unfortunately, there is no obvious
way to estimate a priori an optimal value for the regularization
parameterq, as it depends on the type of the data, level of noise,
etc. Generally, there is a wide range (e.g., an order of magnitude)
of acceptable parameters as the results are not very sensitive to
q. An increase ofq leads to a more smooth and uniform
spectrum, while decreasing the resolution. Note also that this
smoothing is nonlinear and has nothing to do with increasing
the widths of all the peaks by shifting the poles in the complex
plane byiΓ.

More detail about RRT for spectral estimation with some
numerical examples can be found in refs 12 and 14. In the next
sections we extend RRT to some applications in the area of
quantum dynamics calculations.

III. All S Matrix Elements from a Single Wavepacket
Propagation

As shown in ref 8, in the time-dependent framework, and
later in ref 9, using the time-independent Green’s function
formulation, theR f R′ scattering amplitude can be expressed
using a matrix element of the Green’s function,

whereĜ+(E) ) (H̃ - E - i0)-1 andêR andêR′ are wave packets
localized in the asymptotic region corresponding to the asymp-
totic channels with quantum numbersR andR′. As was pointed
out in ref 9 êR and êR′ do not have to be purely incoming or
outgoing. Moreover, even the choice of real and very narrow
wave packets suffices. The only condition is that the prefactor
defined by the overlap integrals betweenêR, êR′ and the
incoming asymptotic solutionsf RE

+ , f R′E
+ is nonzero.

The numerically challenging part in eq 22 is the Green’s
function matrix element. It can be evaluated using a time-
dependent formulation8 in which, e.g., the initial stateêR is
propagated in time, the time correlation function (êR′|êR(t)) is

[Ũp] jj ′ ) Ŝ ∑
σ)0,1

eiσ[τM(æj′-æj)+π]

1 - eiτ(æj′-æj)
∑

n)σM

(σ+1)(M-1)

einτæjc[(n + p)τ]

(12)

Ŝg(æj,æj′) ) g(æj,æj′) + g(æj′,æj) (13)

[Ũp] jj ) ∑
n)0

2M-2

einτæj(M - |M - n - 1|)c[(n + p)τ] (14)

[C̃] j ≡ (Φ|Φ̃j) ) ∑
n)0

M-1

einτæjc(nτ) (15)

I(s) ) C̃TR̃(s)-1C̃ - c(0)/2 (16)

R̃(s) ) Ũ0 - eiτsŨ1 (17)

R̃(s)X̃(s) ) C̃ (18)

I(s) ) C̃TX̃(s) - c(0)/2 (19)

I(s) ≈ C̃T(R̃(s)†R̃(s) + q2)-1 R̃(s)†C̃ - c(0)/2 (20)

(R̃†(s)R̃(s) + q2)X̃(s) ) R̃†C̃ (21)

SR′R ) i
(êR′|Ĝ+(E)|êR)

(êR|f RE
+ )(|êR′|f R′E

+ )
R * R′ (22)
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computed and then Fourier transformed to yield theR f R′
transition matrix element. Similar strategies are implemented
in other time-dependent approaches,7 the obvious drawback
being the need to propagate as many wave packets as there are
open channels in order to evaluate the full S-matrix or to
compute the cumulative reaction probability.

Our choice to evaluate eq 22 corresponds to the use of the
global in energy Chebyshev18 or better the damped Chebyshev
recursion expansion19 of the Green’s function,

where cos(s) ) E and the damped Chebyshev polynomials19

satisfy the following recursion relations,

Here for simplicity we assumed that the Hamiltonian operator
Ĥ is already rescaled so that its spectrum belongs to the interval
[-1; 1]. The damping operator e-γ̂ provides a correct analytic
continuation of the Chebyshev propagatorT̂n.

At first glance eq 23 requires propagation of either of the
two statesêR′ or êR, which would conceptually be similar to
the time-dependent strategies. However, as demonstrated in ref
6, one can evaluate (êR′|Ĝ+(E)|êR) using the three cross-
correlation functions

that do not require propagation of eitherêR′ or êR, but
propagation of some auxiliary state,

A good choice forê0 could be essentially any vector with
random coefficients so it would overlap withall system
eigenstates. The sameê0 can then be used for any other transition
amplitude.

In ref 6 (êR′|Ĝ+(E)|êR) was computed by harmonic inversion
of the three cross-correlation functions and then by combining
the results to express the Green’s function matrix element in
terms of its poles and residues. However, this approach is
difficult to apply in case when the broad poles (direct scattering)
have significant contribution to the dynamics. Here we show
how RRT can be implemented avoiding the solution of the
harmonic inversion problems and, thus, making the approach
much more robust and stable.

The assumption of eq 4 is rewritten as

where the rank of the effective evolution operatorÛ is doubled
compared toK, the dimensionality of the actual Hamiltonian
operatorĤ. This is because each complex poleEk of the Green’s
function Ĝ+(E) gives rise to the two complex eigenvalues of

Û, namely, e-iωk and eiωk
/

satisfying cosωk ) Ek (see refs 1 and
6 for more detail). So one should not confuseÛn with T̂n and
êl(n) with Φl(n), as they are associated with two different spaces.
By analogy with eq 5 we can write

Now evaluating everything in the Fourier basis,

we arrive at the following regularized resolvent formula,

where R̃(s) is defined as before using eq 17 andc00(n); the
elements of the column vectorsC̃R and C̃R′ are

andcR′R(0) ) (êR′|êR).
Equation 30 is another important new result of this paper. It

implies that anySR′R could be recovered although neither of
the channel statesêR′ or êR had to be propagated. Note that an
obvious but important consequence is that the microcanonical
reaction rate, which is proportional to the cumulative reaction
probability, can also be computed atall energies from asingle
wave packet propagation, no matter how many scattering
channels or transition states are involved in the reaction process.
Thus, for a multichannel problem the present approach compared
to those based on the conventional strategies can increase the
total numerical efficiency by a factor equal to the number of
channels.

Note, in addition, that once the initial wave packetê0 is real,
its propagation involves only real arithmetics no matter whether
the final wave packetsêR are real or complex.

IV. Estimation of the Inverse Laplace Transform

As noted in a number of publications,11 sometimes it is easier
to compute the Laplace transform of an observable rather than
the observable itself. One important example corresponds to
the imaginary-time correlation function of the type

which can be computed by path-integral Monte Carlo tech-
niques. If, however, the density of states,

is the quantity of interest, one could, in principle, obtain it due
to the Laplace transform relationship (1). This circumstance
stimulated researchers to try to develop numerical algorithms
for the inverse Laplace transform. The problem is usually
complicated by the fact that the function to be inverted is very
short and noisy, so the inversion problem is very ill-defined
and any algorithm may easily become unstable. In what follows
we adapt RRT to evaluate the inverse Laplace transform for a
given discrete data setc(nτ), n ) 0, 1, ...,N - 1. To do this,
we assume thatc(â) satisfies eq 4, but in the present case we
meanÛ ) e-τΩ̂ (rather than e-iτΩ̂) with a non-Hermitian, but
symmetric, effective Hamiltonian operatorΩ̂ with complex
polesωk satisfying Reωk > 0 and Imωk < 0. Note that there
is no contradiction with the fact thatĤ in eq 32 is Hermitian,
as the effective HamiltonianΩ̂ does not have to coincide with
Ĥ. We can now define a spectral function using

(êR′|Ĝ+(E)|êR) )
2i

sin(s)
∑
n)0

∞

(êR′|T̂n
γ|êR)eins(1 - δn0/2) (23)

T̂0
γ ) 1, T̂1

γ ) e-γ̂ Ĥ, ..., T̂n+1
γ ) e-γ̂(2ĤT̂n

γ - e-γ̂T̂n-1
γ )
(24)

cl0(n) ) (êl|ê0(n)), l ) 0, R, R′ (25)

ê0(n) ) T̂n
γê0 (26)

cll ′(n) ) (Φl|Ûn|Φl′) (27)

(êR′|Ĝ+(E)|êR) ) 2i
sin(s)(ΦR′|{ 1

1 - eisÛ
- 1

2}|ΦR) (28)

Φ̃j ) ∑
n)0

M-1

einæjΦ0(n) j ) 1, 2, ...,Kwin (29)

(êR′|Ĝ+(E)|êR) )
2i

sin(s)
[C̃R′

T (R̃(s)†R̃(s) + q2)-1R̃(s)†C̃R - cR′R(0)/2] (30)

[C̃l] j
≡ (Φl|Φ̃j) ) ∑

n)0

M-1

einæjcl0(n) (31)

c(â) ) Tre-âĤ (32)

F(E) ) Trδ(E - Ĥ) ≡ 1
π

Im[Tr
1

Ĥ - E + i0] (33)
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The density of states can be obtained fromf(E) using

Thus, the problem is to estimatef(E). We can further assume
thatτ(Ω̂ - E) is small, which is reasonable, and use eτEÛ ≈ 1
+ τ(E - Ω̂) to obtain the following approximation,

where theτ/2 has the same origin as in eq 5. Finally, the RRT
expression (20) can be used directly withs replaced by-iE,

with the data matrixR(-iE) ) U0 - eτEU1.
Note that in the present case the data size is usually small

and the need to use a Fourier basis is questionable, although if
one chooses the basis withæj values in the vicinity of zero,
there is a chance to reduce both the effect of noise and the size
of the matrices to be inverted.

Equations 37 and 20 constitute an important new result that
has at least three advantages: (i) it provides an accurate inverse
Laplace transform in the case of a noiseless signal that can be
represented by the formc(nτ) ) Σkdke-nτωk; (ii) it is computa-
tionally inexpensive as it does not involve the solution of any
nonlinear optimization problem; (iii) it has no intrinsic (expo-
nential) instability problem often encountered in other ap-
proaches, based on an analytic continuation.

However, eq 37 has a limited applicability as only a limited
amount of information can be extracted fromc(â), which is
both noisy and severely truncated. Therefore, in the spirit of
ref 13 (appendix E) and refs 3-6 it should benefit from the
use of a cross-correlation matrix, rather than a single signal as
in eq 32. This possibility is explored in the next section.

V. Inverse Laplace Transform by Inverting a
Cross-Correlation Matrix

The idea of using a cross correlation matrix is to increase
the information content of the signal for the same time length.6

To be able to benefit from this using RRT, one needs the data
to be effectively representable in the form of anL × L time-
cross-correlation matrix (27) with a set of fictitious states{Φl},
l ) 1, ..., L. This can be achieved by following ref 5, i.e.,
consider a cross-correlation matrix,

constructed using a set of linear independent operators{Âl},
l ) 0, ..., L - 1, that commute withĤ and usingÂ0 ) Î, the
identity operator. An example of such a set is the set of moments
of Ĥ, i.e., Âl ) Ĥl, l ) 0, ...,L - 1. If we now assume thatΥk

are the eigenfunctions of all these operators and defineÛ )
e-τĤ andΦl ) Σk(ΥkÂ lΥk)Υk, it is not very hard to see, that eq
38 can indeed be rewritten as

Another possibility is to implement projection operatorsÂl
20

that project an initial stateΦ0 to statesΦl ) ÂlΦ0 dominated

by certain excited states. In ref 20 the authors considered a single
autocorrelation function, while here we want to use the whole
L × L cross-correlation matrix

Unlike ref 20, there is no strong restriction on the choice ofÂl

here. This makes the approach more flexible. Clearly,cll ′(â) in
eq 40, as well as in eq 38, has the form of eq 39.

To extract the spectral information fromcll ′(â) satisfying eq
39, consider the superbasisΦl(n) ) ÛnΦl, n ) 0, ...,M - 1, l
) 0, ...,L - 1, with total sizeM × L. We can evaluateΦ0, the
overlap matrix, and the operatorÛ in this basis by analogy with
eq 8,

The desired spectral functionf(E) ) Tr[(Ĥ - E - i0)-1] can
be estimated using eq 37 with the only difference that the size
of the basis is here increased by a factor ofL for the same signal
length N ) 2M. This implies that ideally anL × L cross-
correlation-matrix contains by a factor ofL more information
than a single time-correlation function. This circumstance is
certainly very useful, especially in the context of the imaginary-
time path-integral formalism as the signals of such type decay
exponentially withâ and, therefore, have very strict limitations
on their length. Clearly, implementation of a Fourier basis here
is completely analogous to the cases considered previously (e.g.,
in ref 6) and in section II.

VI. Summary

The new linear algebraic formalism based on RRT offers a
number of numerically efficient and computationally inexpen-
sive ways to process the data and extract the underlying spectral
information, subject to the condition that the data satisfies the
form of a time-correlation or time-cross-correlation function.

The applications considered in this paper present a great
numerical challenge and are hardly manageable by the conven-
tional signal processing techniques.

There is a broad class of problems, particularly, in the area
of quantum dynamics calculations, in which our methodology
can be potentially very useful. Those will be considered in our
forthcoming publications.
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